 |
1樓
巨大八爪鱼
2014-5-3 10:21
|
 |
2樓
JosephHeinrich
2014-5-3 10:22
|
 |
3樓
巨大八爪鱼
2014-5-3 14:41
已知數列{an}中,Sn是它的前n項之和,並且S(n+1)=4an+2(n=1,2,…)a1=1. 設bn=a(n+1)-2an (n=1,2,…),則數列{bn}是等比數列; 設cn= (n=1,2,…),則數列{cn}是等差數列 ,an=2^n-1 +(n-1) 3*2^n/4,Sn=2+3(n-1)2^n
|
 |
4樓
巨大八爪鱼
2014-5-3 14:43
已知0<a<1<b,則logab+logba的取值範圍為(-∞,-2]
|
 |
5樓
巨大八爪鱼
2014-5-3 14:45
已知不等式x∧2+(1-m)x+1>0對任意的x∈(-1,+∞)都成立,則m可以在{-1}U(3,+∞)中取值。
|
 |
6樓
巨大八爪鱼
2014-5-3 14:47
已知不等式x^2+ax+1<0的解集為空集,則實數a的取值範圍為[-2,2]。
|
 |
7樓
巨大八爪鱼
2014-5-3 14:51
已知數列{an}中,Sn是它的前n項之和,並且S(n+1)=4an+2(n=1,2,…)a1=1. 設bn=a(n+1)-2an (n=1,2,…),則數列{bn}是等比數列; 設cn= (n=1,2,…),則數列{cn}是等差數列 ,an=2^n-1 +(n-1) 3*2^n/4,Sn=2+3(n-1)2^n
There is a sequence {an}. Sn is the sum of the first n items of {an}, and S(n+1)=4an+2. a1=1. Then an=2^n-1 +(n-1) 3*2^n/4, and Sn=2+3(n-1)2^n. Suppose bn=a(n+1)-an, then {bn} is a geometric sequence.
|
 |
8樓
巨大八爪鱼
2014-5-3 14:52
x^2-2x+1<0的解集為空集 x^2-x+1<0的解集為空集 x^2+1<0的解集為空集 x^2+x+1<0的解集為空集 x^2+2x+1<0的解集為空集 x^2+(π/2)x+1<0的解集為空集 x^2-(π/2)x+1<0的解集為空集 x^2+(e-1)x+1<0的解集為空集
|
 |
9樓
JosephHeinrich
2014-5-3 18:33
暈!
|
 |
10樓
巨大八爪鱼
2014-5-9 12:48
回覆:9樓
已知0<a<1<b,則logab+logba的取值範圍為(-∞ ,-2]
|