这一阵在看刘慈欣的《三体》,的确是好科幻小说。不过,再好的科幻小说也仍然是科幻,更何况“硬度”不一,科学背景上总归能找出不合事实的地方来。当然,这些不能说就是Bug,毕竟,总得让写书的有些自由发挥的余地,反正这又不是写物理论文。
而且,好的科幻容易把人拉入梦境中,比如看《球状闪电》的时候,我时常会有出冷汗的感觉。这个时候,科学知识可以把人从小说营造的意境中拉出来,象我逃离量子玫瑰等充满鬼气的情节的法子就是念叨“我相信系综解释”。多了解些背景,兴许可以少做些噩梦。
三体问题
不消说,光从书名上看,三体问题就是《三体》最大的背景之一。
三体问题算是经典力学里面的天体力学的老难题了,从牛顿那个时候起就是物理学家和数学家的恶梦。
先说一下什么叫三体。用物理语言来说,在一个惯性参考系中有N个质点,求解这N个质点的运动方程就是N体问题。参考系是惯性参考系,也就是说不受系统外的力的作用,所有的作用力都来自于体系内的这N个质点之间。在天体力学里面,我们通常就只考虑万有引力。
用数学语言来说,经典力学的N体问题模型就是,在三维平直空间里有N个质点,每个质点的质量都已知而且不会变化。在初始时刻,所有质点的位置和速度都已知。每个质点都只受到来自其它质点的万有引力,引力大小由牛顿的同距离平方成反比的公式描述。要求解的就是,任意一个时刻,某个质点的位置。
N=2,就是二体问题。N=3,也就是我们要说的三体问题了。
N=2的情况,早在牛顿时候就已经基本解决了。学过中学物理后,大家都会知道,两个质点在一个平面上绕着共同质心作圆锥曲线运动,轨道可以是圆、椭圆、抛物线或者双曲线。
然而三体运动的情况就糟糕得多。攻克二体问题后,牛顿很自然地开始研究三体问题,结果也是十分自然的——头痛难忍。牛顿自述对付这种头痛的方法是:用布带用力缠紧脑袋,直至发晕为止—虽则这个办法治标不治本而且没多少创意,然而毕竟还是有效果的。
其实,三体运动已经是对物理实际简化得很厉害了。比如说对质点,自转啦、形状啦我们统统不用考虑。但是只要研究实际的地球运动,就已经比质点复杂得多。比如说,地球别说不是点,连球形都不是,粗略看来是个赤道上胖出来一圈的椭球体。于是,在月球引力下,地球的自转轴方向就不固定,北极星也不会永远是那一颗。而考虑潮汐作用时,地球都不能看成是“硬”的了,地球自转也因此越来越慢。
然而即使是极其简化了的三体问题,牛顿、拉格朗日、拉普拉斯、泊松、雅可比、庞加莱等等大师们为这个祭坛献上了无数脑汁也未能将它攻克。
当然,努力不会完全白费的,许多有效的近似方法被鼓捣了出来。对于太阳系,摄动理论就是非常有效的解决问题的近似方法。而对于地月系统,则可以先把地球和月球看作是二体系统,再考虑太阳引力的影响。“月亮绕着地球转,地球绕着太阳转”的理论计算已经作得非常精确,上下几千年的日食月食都能很好地预测。而对一颗受到行星引力干扰的彗星,人们也能算出一段时间内很精确的轨道,比如天文学家可以提前几年就预测出彗星撞木星。而且,太阳系的稳定性也在很大程度上得到了证明,比如说大行星的轨道变化大体上是周期性的,不会始终单向变化下去直到行星系统解体。
为了解三体问题,那就考虑再简化些吧。认为一个质点的质量非常小,从而它对其它两个质点的万有引力可以忽略。这样一来,三体问题就简化成了“限制性三体问题”。实际上,这个简化等于是先解一个二体问题,然后再加入一个质量很小的质点,再解这个质点在二体体系中的运动方程。
然而,即使这样也还是太复杂了。于是,再作简化,就得到了“平面限制性三体问题”,就是要求三个质点都在同一个平面上。然而,即使是对这样极度简化的模型,也还是没有解析通解,也就是得到一个普遍适用的公式是不可能的。
对“平面限制性三体问题”再作简化,认为两个大质点作圆周运动,就是“平面圆型限制性三体问题”。1772年,拉格朗日在这种限制条件下找到了5个特解,也就是著名的拉格朗日点。比如下面这张图上,木星和太阳连线上有L1,L2,L3三个拉格朗日点,而在木星轨道上则有L4,L5这两个点,和太阳以及木星构成等边三角形。L1,L2,L3是不稳定的,如果小质点离开这三个点,就会越跑越远。L4,L5则是稳定的。
本来,拉格朗日点多少显得有点象数学游戏,但是自然界证明,稳定解在太阳系里确实存在实例。对于木星来说,L4和L5上各有一群小行星,就是著名的特洛伊群和希腊群小行星。