回复:Help, about specialties in the university
8-13
·
回复 @lizhenxuan:Welp, law profession certficare can be regarded one of the most important things if you wanna find a job. And law learning... if you just wanna find a job, it's not hard as long as you spend three years engaged in knowledge (not only t...
|
||
回复:【Weekly Topic 2025.08.10】Anniversary Bash Brainstorm
8-13
·
回复 @lizhenxuan:That's a sad story. But don't worry, the anniversary bash can last about one week (estimated)
|
||
回复:【Weekly Topic 2025.08.10】Anniversary Bash Brainstorm
8-13
·
回复 @啊啊是谁都对:Yes, something like this. I will leave for my school tomorrow. I will stay at school for 5 days and 1 day off. But there is going to be a exam about one week later so I am not sure whether I will be at home at anniv...
|
||
666 [图片]
8-13
·
![]() |
||
回复:Help, about specialties in the university
8-13
·
Thank you! Can you tell me about your feeling of law learning(I once hear that law is a challenging subject), the empoloyment vision, and other important things about it?
|
||
回复:【AI生成】G(TREE3)和TREE(G64)哪个更大?
8-13
·
1. 理解基本概念
首先,我们需要明确几个关键概念:TREE函数、Graham数(G64)和G函数。 TREE函数 TREE函数是组合数学中一个极其快速增长的函数。TREE(n)表示满足某些特定条件的n-标记树的序列的最大长度。具体来说: • TREE(1) = 1 • TREE(2) = 3 • TREE(3) 是一个非常大的数,远远超过许多其他大数,如Graham数。 TREE(3)之所以著名,是因为它比许多其他大数(如葛立恒数)大得多,以至... |
||
【AI生成】G(TREE3)和TREE(G64)哪个更大?
8-13
·
内容由 AI 生成,请仔细甄别
|
||
回复:【微剧场】鬼王的魔力上限
8-13
·
回复 @浅风仁樱:不过肟可以一定程度上理解这么写是为了喜剧效果,如果弗莱迪像个正经科学家一样一板一眼地说“我承认这个问题无法解决”,那就不搞笑了
|
||
回复:【微剧场】鬼王的魔力上限
8-13
·
弗莱迪的确也有一定的“民科行为”,那就是面对一个自己不懂的问题,真正具有科学精神、科学素养的人(鬼)应该坦诚地承认自己不懂或算不出来,而不是强行说“不可能存在自己不会的问题”
|
||
回复:【微剧场】鬼王的魔力上限
8-13
·
其实弗莱迪的“超过G1≈∞”本质是“实用主义妥协”,因为G1的规模远超任何科研实际应用需求(比如全宇宙粒子总数≈10^80,而3↑↑↑3就已碾压)——面对无法直观理解的数,弗莱迪强行归类为“无限”是实用主义选择,是一种无可奈何的妥协
|
||